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A number of general results in the dynamical theory of nonlinear elasticity has been ob- 
tained in [I] without taking account of dissipative phenomena, where a considerable quantity 
of interesting problems have also been solved. Relationships on strong and weak discontinui- 
ties in hereditary media of general type have been studied in [2]. However, making the form 
of the heredity functional specific is necessary for the solution of diverse dynamic prob- 
lems. The papers [3, 4] are devoted to applying this problem to a description of the rheo- 
logical behavior of unvulcanized rubber, melts, and concentrated solutions. 

The rheological relationships obtained in [3, 4] are confirmed in a number of papers, 
and their good agreement with experimental data is shown (see [3] for some results of this 
confirmation and references). 

A number of papers ([5-7], for example) are devoted to wave propagation in rods with 
different rheological characteristics, where slightly deformable rigid materials have been 
examined, in which connection the authors of these papers neglected the change in section in 
the usual rod approximation. The quadratic inertial forces were neglected here, and the 
center of gravity was carried over to an investigation of wave effects associated with the 
physical nonlinearity of the rheological equations. 

Different types of waves being propagated in a viscoelastic rod are examined in this 
paper with strong geometric and physical nonlinearities taken into account. 

Let us use the description averaged with respect to the section to investigate the iso- 
thermal motion of a viscoelastic rod by considering the motion of the rod as close to uniax- 
ial tension-compression, It is assumed that all the quantities vary sufficiently slowly 
along the rod length, and the latter is much greater than the transverse dimension of the 
section. 

The following equations are valid for an incompressible viscoelastic medium with non- 
linear theological equations of Maxwell type in this case: 

at ~ a= (vl)  = o; (l) 

a (t,/) , a 
at T ~ (V"/--O' /po -l)=O; (2) 

i [ ~z a~, ) F (~) a~ (3) 
~ \-aF -i- vT+- x + ~ - o . '  

where f is the cross-sectional area of the rod; v is the mean velocity with respect to the 
section; o(%) is the mean normal stress with respect to the section; ~ is the mean elastic 
strain with respect to the section; x is the longitudinal coordinate; t is the time, 8o = 
no/lB is the relaxation time; no is the viscosity under shear; and 2~ is Hooke's modulus. 
The rheological parameters 0o, no, and B govern the behavior of the medium in its linear 
strain domain. In the case of homogeneous uniaxial strain, the quantity % is the ratio be- 
tween the length of the specimen at a given time and its length after an instantaneous un- 
loading. It hence follows that % �9 I under tension and 0 < X < I under compression. 

Equation (i) corresponds to mass conservation (2) to momentum conservation (we neglect 
gravity and surface tension forces), and (3) is the relaxation equation. The specifics of a 
Maxwell medium is to give the functions ~(A) and F(~). In the simplest case considered in 
[3]: 
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~(},.) =-: 2~(~ ~ - x-~), 

].'(x) = ~-2(~0_ _ l)(x~ + ~. ,+ .1)exp {-(1, '2)~x-~(~. - ~)~(x ~- + 41 + i)}. (4) 

The formula for the stress o(X) in (4) corresponds to the classical kinetic theory of rubber 
under tension--compression of the specimen. The quantity F(X)/6eo is the rate of irreversible 
strain in the medium under consideration. The exponential factor in the formula for F(I) 
describes the abrupt growth of the characteristic relaxation time with the growth of the 
elastic strains in the medium. The numerical parameter B(0 < 8 E I) characterizes the flex- 
ibility of the macromolecules for the viscoelastic polymer medium under consideration [3]. 

For the case of no stresses ~ = I corresponds; while to inertia-free homogeneous strain: 
v = ~.(t)(x-- xe), 0 = ~(t), X = ~(t), f = f(t) [3]. Letting Oo + | (or B § in (3), we ob- 
tain the limit case of an elastic medium with finite strains, Using (i), we can also convert 
(3) into a divergent form 

O~-~/Ot + O(v~-~)/Ox = f(~)~Oe~. (5)  

Now. l e t  us b r i e f l y  examine t h e  p r o p e r t i e s  o f  the  s y s t e m  ( 1 ) - ( 3 ) .  Composing the  c h a r -  
a c t e r i s t i c  e q u a t i o n  f o r  t h i s  s y s t e m  by the  u s u a l  means,  we f i n d  the  c h a r a c t e r i s t i c  r o o t s  a k 

~1,2=:v~%],/P~ld(alX)/d%, a 3 = v .  (6) 

I t  f o l l o w s  f rom (6) t h a t  t he  s y s t e m  i s  h y p e r b o l i c  i f  d(~/X)/dX > 0,  as  ho lds  f o r  t h e  v a l u e  
of ~(~) determined from (4), since d(o/X)/dX = 2~(i + 2~ -a) > 0 in this case, 

It is known [8] that the characteristic roots ak agree with the velocities x,(t) for 
weak discontinuity propagation for which quantities from (1)-(3) are continuous along the 
line x,(t) in the x, t plane but their derivatives have jumps. In this case, an equation 
interrelating the quantities f,(t), v,(t), X,(t) on the line x,(t) can be derived: 

d ~I,+ P~ [ d ~  ~d  I,W 
d-T(V. / . )  - -  (2v .  - -  x:)--Zi-  v . - - z :  ( -gZ/ .~-Z[  (1.~*) + -@-- F (~.)~ = 0, ( 7 )  

where x,(t) = s (t), f,(t) = f[x,(t), t], and the other quantities in (7) are defined analo- 
gously. 

It is known [i] that normal discontinuities in the stress and strain rate fields are 
missing for an incompressible nonlinear elastic medium. An analogous circumstance holds both 
for an incompressible viscoelastic medium of general type [2] and, therefore, for a medium 
of Maxwell type with the rheological equations (4), Nevertheless, as is seen from the sys- 
tem (1)-(3), the existence of strong discontinuities is possible for average equations of 
the "rod" approximation being considered. In the neighborhood of these discontinuities the 
average description of the motion of the viscoelastic medium being considered is naturally 
false, strictly speaking, and it is here necessary to use an essentially nonuniform scheme 
for the computations. However, it is known that outside the zone of abrupt changes in the 
parameters the average description yields a small error, and the zone of abrupt changes on 
the order of the rod diameter in the given average description is replaced by a discontinui- 
ty. It hence appears that all the qualitative features of such behavior can be described 
sufficiently well even within the framework of the one-dimensional model under considera- 
tion with strong discontinuities taken into account. 

Let xo(t) be the shock coordinate. Let us mark all the quantities in (i), (2), (5) by 
the subscript I if they are examined for x = xo(t)+o~and by subscript 2 if they are taken- 
for x = xo(t)o. Then by using the customary procedure to obtain conditions on the shock 
([8], for instance), we have the following relationships from (i), (2), and (5): 

x~ (/~ - A) +/~h - ~v~ = o, 
" , 2 2 

ZO (/~V2 -- Lh) T/:Vl --/~V2 -- p~i (f2~: __/202) = O, (8) 

x~(I/X2-- I / l i )  q- v : / X i  - -  v 2 / X  ~ = O, 

where ~k = =(%k ) (k = i, 2). It follows from(8) that 

(9) 
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(X0--Vl)"  ;oo(;~.l-~,~,)L ~1 --  ~"2 J 

- , 2 )  2 - [ .  ]. 
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The relationship (9) shows that a purely elastic strain is realized on the shock. If 
it is assumed that all the quantities (marked with the subscript i) are known ahead of the 
shock, then the relationships (9) and (i0) interrelate the unknown quantities v2, :f=. %2, 
xe(t); the closing equation is obtained from the solution of the problem with initial data 
entirely for the system (i), (2) i and (4), 

Now, let us examine several examples illustrating strong and weak discontinuities in a 
viscoelastic rod. Let the wave be propagated in the positive x direction, i.e., x~(t) > 0. 
Let I denote the domain x < x~(t), and I! the domain x > xu(t). Here x = x,(t) in the case 
of a weak discontinuity and xu = x,(t) in the case of a strong discontinuity, 

Let us examine loading waves being propagated along an unloaded rod. 

i. Weak Tension-Compression Waves. Here fl = f, = const, v~ = 0. ~ = i in domain I. 
Because of continuity these same values are conserved on the weak discontinuity x = x,(t). 
Since F(1) ~ 0, (7) is satisfied identically on the weak discontinuity, For X = I it fol- 
lows from 64) that d(~/X)/dXIx=l = 6~ = E, where E is the Young's modulus. We then have from 

~6) that x~ = (E/p,)I/2 = ce; i.e., weak loading waves are propagated at a velocity c, of 
linear perturbation propagation (speed of sound) over an unloaded material, 

2. Tensiorr-Compresslon Shocks. In domain I as before, f~ = f, = const, vl = 0, Xl = 
i, Behind the shock, we have, from (97, (i0~, and (4), 

/2 = (t), x; = eo |/(i/3) (i + +  F2), (ll) 

Co=I/  
" ~o-o' 

from which it follows that for a compression shock (X~ < i) we have f2 > fo, v2 �9 0, x~ > 
co; while for the tension shock (X2 �9 i) we have f2 < fo, v2 < 0, x~ < co. This last in- 
equality shows that the tension shock being propagated over an unloadedmaterial is unstable 
since it will give energy to the small vibrations of the medium overtaking it during propa- 
gation. The compression shock is stable since it is propagated at supersonic speed and the 
small perturbations superposed on it will damp out because of radiation of the sound lagging 
behind it, 

It hence follows that for sufficiently smooth initial conditions the compression wave 
front will be steeper disclosing the tendency for the strong discontinuity to appear; on the 
other hand, an initially sharp tension wave front will spread and be=ome a weak discontinui- 

ty, 

Now, let us examine unloading waves beingpropagated over a uniformly loaded relaxing 

rod. 

3. Weak Unloading Waves. Here fl = f~ = const, Al = Al(t), vl = 0 in domain I. It 
follows from (3) [or (7)] that l~(t) i o:(t) are determined from the relationships 

d~ , X, F(~)  =0,  a~(t) = 2 p ( ~ - -  %F'). (12) 
dt r 600 

These same values are also conserved on the weak discontinuity x = x,(t) because of continu- 
ity, It follows from (6) that the propagation velocity for a weak discontinuity is described 
by the formula 

s (t) = co V o / 3 ) ( ~  + 2~F'). (13) 

Since f(k) = h 2 + 2X "I has a minimum at h = i and f(1) = 3, i~ follows from (13) that 
x~(t) > co, where there results from (12) that x~(t) § ci as t grows. Therefore, weak un- 
loading waves of the type under consideration are supersonic in a relaxing material for both 
tension and compression. Let us also note that relaxationof the material under inhomogen- 
eous conditions occurs behind the wave front in domain II, 
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4. Unloading Shocks. In domain I as before f~ = fe, ~ = Xx(t), w = 0, ~ ~ a(X1)~ 
where ~ and %1 are determined from (12). Behind the shock front~ %,e,, in 40~%a ll~ the 
system (i)-(3) admits of the simple solution 

= i, v = v(t), o--~0,  (14~ 

while the equation 
O/lOt + v(t)O//Ox = O, 

which is easily integrated, holds for f(x, t). 

Taking account of (4) and (14), we have from (9) and (i0) [12 = I, v2 = v(t)] 

f2 = ]xL~, x~ = coV-( t ,3) (z~ + k~ ~- t ,  v ( t )  = (1 - zF~)x~.  (15) 

It follows from (15) that for an unloading shock being propagated over a compressed 
material (~i < i), we have f2 < fl, x~ < ce, v(t) < 0 (i.e., this wave is unstable) while for 
an unloading shock being propagated over a material in tension (11 > I), we have f2 > f~, 
x~ �9 co, v(t) �9 0 (i.e., this wave is stable). In the case under consideration~ a strong 
discontinuity will evidently be realized with the lapse of time for any initial data for an 

! 
unloading wave being propagated over a rod in tension since x~(t) �9 x,(t), while for an un- 
loading wave being propagated over a compressed rod there will be a weak discontinuity since 
in this case x~(t) < Co < x~(t). 

Let us examine formulation of the problem about impact of a finite viscoelastic rod on 
a rigid obstacle. Let a rod of length L in the undeformed state and with a velocity U prior 
to impact make impact on a rigid obstacle. 

Let us select the origin (x = 0) at the free end of the rod at the time it touches the 
wall. Then for the system (1)-(3) with (4) we shall have the following system of initial 
and boundary conditions: 

t = 0 :  v =  U, f = f o  = c o n s t ,  ~ = t ( 0 ~ < x < L ) ;  (16) 
t > O :  vlx=L = O; ~lx=a(t)=: l,  

where a(t) is the coordinate of the free end of the rod. The boundary condition ~ = 1 at 
x = ~(t) in (16) corresponds [see (4)] to the dynamical condition o = 0 at the free end of 
the rod. 

As is known, under the impact of a rod on a rigid obstacle, compression, unloading, and 
tension waves, which are successively replaced, are propagated. Hence, molecular adhesion 
forces originate at the point of contact from the instant of rod contact with the wall, which 
cause the rod to adhere to the wall. At the time t, of origination of the first tension wave, 
the stress a(L, t,+| in the rod at the point of its contact with the wall can exceed the 
stress ao produced by the adhesion forces, and the rod separates from the wall with a mean 
mass velocity UI less than the initial velocity U because of the incompletely elastic nature 
of the impact. In the opposite case when a(L, t,+ o) < Goo the rod adheres to the wall and 

damped vibrations originate for t > t,. To estimate the quantity go, it can be assumed in 
a rough approximation that ~o = kE, where k " I (E = 6B). 

Resolution of the question of whether the rod separates from the wall upon impact or 
adheres to it depends not only on the magnitude of the initial rod velocity U, but also on 
the velocity at which the relaxation processes proceed which lower the stress level in the 
rod with the lapse of time. 

Now, in addition to conditions (16), let us formulate the condition for separation or 
adhesion of the rod and the wall 

r t,+o) > kE, v(L, t,+o) < 0, 
o(L, t , + o ) < k E ,  v(L, t,+o) = 0  (vx= L = 0 ,  t >  t,). 

(17) 

The first condition in (17) corresponds to separation of the rod from the wall for t > 
t,, and the second to the adhesion condition. 

The formulas for the mean-mass velocity UI and the magnitude of the kinetic energy loss 
&E of the rod being separated from the wall are 
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U~ = ~,L v.  (z) 1, (x) dz (/oL = g), 
IXtg 

L 

A E  = - -  (I /2)  Po j~ v2 (x) f ,  (~) dx  + (1/2) pofoLv ~, 
g ~  

(18) 

where V is the rod volume and v, = v[t,+e, f, = flt~+ e are the velocity distribution and a 

section along the rod length at the time of its separation from the wall, 

The solution of the problem formulated above about the impact of a viscoelastic rod on 
an obstacle is carried out by a numerical method in the dimensionless variables marked with 
a prime: 

t = (2L /U) t ' ,  x == 2L x ' ,  v = U v ' , / , . = / J ' ,  a = 2~w' .  ( 1 9 )  

Henceforth, the primes willbe omitted for simplicity. 

The following numerical values of the parameters 

L -= 50  cM, U - 1 0 - - 1 0  ~ c m / ~ e c .  Oo = 0.t67seC,po == t g / c m  "3, 

= 10 4 dyn/cm ~ 

were taken in the computations. 

After the passage to the dimensionless variables (19), the following parameters appear 
in these equationsl 

M o = U c ~  1, 0 = 30oUL - t  (c o = ( E p ~ l ) ~ / D ,  

where M. is the initial Math number [the quantity M~ 2 appears in the dimensionless equation 
(2) as a factor for a], and co is the propagation velocity for linear perturbations. There- 
fore, the desired solution depends on three dimensionless parameters M,, %, $, where B enters 
into F(A) according to (4), For the mentioned numerical parameters % = 2.4 Me, 

A symmetric formulation, under which the "wall" has the coordinate x = 0,5, was used 
for a numerical solution of the problem. In such a formulation the dimensionless initial 
and boundary conditions (17) take the form 

t = 0 :  0~<x~<t,  / = ~ = i ,  v=sgn(x--0.5); 
t > 0 :  M~=.(t) = M~=b(t) = i ,  

where x = a(t), x = b(t) are the coordinates of the free ends of the symmetrically continued 
rod at the time t, Use of the mentioned symmetry in the formulation of the problem got rid 
of the insertion of special approximations to calculate the unknown values of f, A, and 
on the wall, 

The problem was solved numerically by the method of a "through" computation of shocks, 
as well as the unloading and loading waves originating in the rod after impact, A divergent 
form of the continuity and momentum equations was used. The equation for the function A(x, 
t) was written in the following divergent form: 

0A , 0B / ~  F()~) = 0, 
at ~ ~x +0-~0 

A (f, v, 2~) 2] In ~,/- 2 / ( l n  / -- ~) ..... 
o - - I  

B (/, v, %) = 2 u l n  2. - -  (3M~) G (i.) -~- u 2 -}- 2v ( l n / - -  1), 

(20) 

where u(A), F(A) are dimensionless quantities determined from (4). 

On the basis of a difference approximation of (20), first in(A) was determined, as is 
convenient for large strain zones. The computations were performed in the ~ coordinate sys- 
tem, where ~ = ix -- a(t)]/(b-- 6) related to the moving ends of the rod, Values of the func- 
tions f and v on the boundaries ~ = 0, ~ = lwere determined on the basis of one~slded differ- 
ence approximations for the continuity and momentum equations. The laws for motion of the 
free rod ends were computed by means of the values found for the velocities, 
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The difference scheme is constructed by analogy to the known "Chekhard" scheme ([9], for 
instance) under the following modification, The emergence into the half-integer time layer 
was carried out on the basis of equations without "sources"("sinks"), due to the incomplete 
divergence of the approximating equations. The difference between the approximation and the 
"Chekhard" scheme is on the order of T for smooth solutions, 

The error in calculation was checked by the magnitude of the integrated imbalances in 
the mass and momentum as well as by comparing the results as the number of computational 
nodes increased. The results of the computations discussed below are obtained on a mesh with 
80 nodes in the domain 0 ~ ~ ~ i. 

Motions of a viscoelastic rod during its impact on a rigid obstacle were computed by 
the method described above. The initial Mach number varied between 0.4 and 2 for the rela- 
tionship e = 2.4Mo noted, which corresponded to initial rod flight velocities U between i00 
and 500 cm/sec. Some results of the computations are represented in Figs. i-4, 

Time chan~es in the coordinate x ~ a(t) of the free end of the rod and of the cross~sec" 
tional area fa(t) = fly=~/2 of the rod at the point of its contact with the wall are shown 
in Fig. i, The dimensional time [see (19)] is plotted along the horizontal. Curves I~3 re. 
fer to the values Me = 0.4, i, and 2 respectively, for the case ~ = 0 [see (4)]| it is seen 
that larger amplitudes and velocities of the damped wave processes with the more intense non- 
linear distortions correspond to higher values of Moo 

It is interesting to note that, as is seen from Fig. i, for Mo = 2 the rod does not 
achieve the initial length during vibrations (for instance, the rod length diminishes approx- 
imately 20% at the end of the unloading phase) while the length grows compared to the initial 
length after the unloading phase for Mo = 0.4 and i. This is related to the fact that the 
velocities of the relaxation processes grow more rapidly with the growth of Mo for ~ = 0 than 
do the wave prQpagation velocities. An analogous phenomenon can also hold for ~ ~ 0 in some 
range of Mo variation, 

The mean-mass rod velocities U, (dashed lines), calculated by means of (18), and the 
stresses ~o on the wall (solid lines) are repTesented in Fig. 2 as a function of the dimen~ 
sional time t, Here, values of the stress according to the recoil criterion (17) with the 
value k ~ 0~35~3.5, which permits determination of the mean-mass rod velocity at the time of 
recoil from the wall, are denoted by the shaded strip. Curves i-3 correspond to the same 
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values of Mo as for Fig. i, B = i. Exactly as for the data of Fig, i~ larger amplitudes and 
frequencies of the dynamical variables ~o and U~ correspond to larger values of M,. As is 
seen from Fi~. 2, larger rod recoil velocities from the obstacle hence correspond to larger 
values of M,, The influence of the parameter 8 on certain quantities characterizSng the wave 
process was moreover studied. Computations were performed for Me = 0,4 and ~ = 0~ l, and 40, 
Results of the computations for 8 = 0 and i differed insignificantly, The dependences f'(t) 
and ~'(t) for M = 0.4 are presented in Fig. 3 where the curves i, 2 correspond to the values 
8 = 0 and 4Q, 

In this latter case, there are practically no relaxation processes in a viscoelastic rod 
except for the zone where ~ = I. and the rod behaves as an elastic body with large deforma- 
tions, similar to cross-linked rubber. 

It is seen from Fig. 3 that in contrast to 8 = 40, where there are quite definite pla- 
teaus in the dependences o~ at 8 = 0 the stress amplitudes are less and there are sec~ 
tions with a noticeable change in ~e(t) instead of plateaus, which indicates intensive re- 
laxation processes. 

Distributions of values of the problem parameters along the rod for M, = I, 8 = I, are 
shown in Fig. 4 for different times. The dimensionless distributions of the quantities f, 
a/6, 2V at the times t, = 0.075, t2 = 0.182, ts = 0.439, t~ = 0.658 sec are denoted by the 
subscripts 1-4. Distributions of the unperturbed quantities for 0 ~ x i 0.5 are marked by a 
prime, where x = 0.5 corresponds to the free end of the rod. There is a distribution of pa- 
rameters close to the shock being propagated from right to left at the time tl in a rod with 
a slightly smoothed initial velocity profile. At this time a considerable part of the rod 
has still not been subjected to perturbations (see the vl, f:, ~, distributions), Values 
calculated on the shock front agree well with the relationship (9) and (I0) found. As is 
seen from the curve for f:, relaxation occurs behind the shock front. This is seen more 
clearly from the curve f2 for the time t2 for which the shock has just been reflected from 
the free end of the rod (see curves 2 in Figs. i and 2 also). At this time almost the whole 
mass of the rod is at rest, except a small section around the free end, which has already 
started to move in the opposite direction (from right to left) at a low velocity, The ~z 
distribution also changes abruptly only near the free end. This time t2 approximately cor- 

125 



responds to the starting-up loading phase of the compressed rod. In this case a shock can- 
not exist and a wave with a very spread out front is formed. This results in a sufficiently 
prolonged rebuilding of the section of the free rod end, whereupon relaxation processes suc- 
ceed in occurring and the rod section at the free end is not completely restored after re- 
flection of the wave. A tension phase starts after the unloading phase, as is illustrated in 
Fig. 4 by distributions of the quantities at the time ts (the initial tension stage) and at 
the time ta (the final tension stage). It is interesting to compare the mentioned times with 
the distributions 2 in Figs. i and 2. 

A distribution of the local Mach numbers M at the time t3, where M 2 = M~[3v2/(% 2 + 
2%-1)], which is similar to the vs distribution, is shown by the dash-dot line in Fig. 4. 
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